Federated

A new interesting approach

Guess what we are talking about today ...

of course...

Machine Learning!

State of the art

There are mainly three principles machine learning *paradigms*.

State of the art

Supervised Learning

Starting from a set of examples, the algorithm can learn some hidden pattern in the data. For each example there is the output. In this way the algorithm can learn from a "knowledge" to predict new data.

Unsupervised Learning

Starting from a set of examples, the algorithm try learn some hidden pattern in the data. The dataset doesn't provide solutions for examples.

I.e. clustering.

Reinforcement Learning

Briefly, the algorithm learns from its mistakes and expands the ways to reach the goal.

Applications: chess, AlphaGo, ...

We focus on supervised learning

Supervised Learning

- We have a dataset and we split it in *training set* and *test set* (we explain why we do this later)
- How the training set is:

		Input	Output	
Example 1	0	0	1	0
Example 2	0	1	1	1
Example 3	1	0	1	1
Example 4	0	1	0	1
Example 5	1	0	0	1
Example 6	1	1	1	0
Example 7	0	0	0	0

New situation	1	1	0	?
---------------	---	---	---	---

Supervised Learning

- The algorithm learns from the training set the pattern inside the data
- Through the test set, we test our algorithm if it is able to predict new data (without providing the output) with a good likelihood.

		Output		
Example 1	0	0	1	0
Example 2	0	1	1	1
Example 3	1	0	1	1
Example 4	0	1	0	1
Example 5	1	0	0	1
Example 6	1	1	1	0
Example 7	0	0	0	0

Nowadays, the standard pipeline for performing supervised learning is to start with data collection. **A huge amount of data**.

Source of the comic: <u>https://federated.withgoogle.com/</u>

How to collect data? A new approach

A new approach: Federated Learning

A new approach: Federated Learning

With the standard pipeline, the machine learning process trains the model on **centralized** data.

But if we train our model on **decentralized** data?

In practice, how?

Secure aggregation* enables the server to combine the encrypted results, and only decrypt the aggregate.

Surge aggregation

Source: https://research.google/pubs/pub45808/

Secure Aggregation is a class of Secure Multi-Party Computation algorithms wherein a group of mutually distrustful parties $u \in U$ each hold a private value x_u and collaborate to compute an aggregate value, such as the sum_{u \in U} x_u, without revealing to one another any information about their private value except what is learnable from the aggregate value itself. In this work, we consider training a deep neural network in the Federated Learning model, using distributed gradient descent across user-held training data on mobile devices, wherein Secure Aggregation protects the privacy of each user's model gradient. We identify a combination of efficiency and robustness requirements which, to the best of our knowledge, are unmet by existing algorithms in the literature. We proceed to design a novel, communication-efficient Secure Aggregation protocol for high-dimensional data that tolerates up to 1/3 users failing to complete the protocol. For 16-bit input values, our protocol offers 1.73x communication expansion for 2^10 users and 2^20-dimensional vectors, and 1.98x expansion for 2^14 users and 2^24 dimensional vectors.

Differential privacy is a well-established way to deal with the risk of *model memorization*,* where a shared model's parameters might be too influenced by a single contributor.

Memorization risk

Memorization risk can be mitigated by pre-filtering rare or sensitive information before training.

Source: https://federated.withgoogle.com/

Machine Learning & Decentralization

- We know the advantages of **AI** (see <u>#CircleSummi1</u>)
- We know the advantages of **decentralization** (see <u>#CircleNight4</u>)
- But of course, apply AI to every project is not useful...
- Apply the decentralization to every project is not useful...
- What do I mean?

Machine Learning & Decentralization

- We have to integrate the appropriate technology when:
 - It is strictly necessary
 - When we want to innovate a product/service
 - When we want to innovate an economic sector
 - When we want to guarantee the users' privacy

Machine Learning & Decentralization

• An example: <u>Gboard on Android</u>

We're currently testing Federated Learning in Gboard on Android, the Google Keyboard. When Gboard shows a suggested query, your phone locally stores information about the current context and whether you clicked the suggestion. Federated Learning processes that history on-device to suggest improvements to the next iteration of Gboard's query suggestion model.

Thanks!

AI & Decentralization lover

